Uploaded with ImageShack.us

domingo, 10 de octubre de 2010

ECUACIONES DIFERENCIALES HOMOGÉNEAS








sería homogénea ya que todos los términos de ambos polinomios son de grado 3. Así se procede dividiendo tanto numerador como denominador por x3 o y3 en función de qué cambio haga más simple su resolución. Llegados a este caso según la elección se puede optar por uno de los dos cambios análogos, que son:






Así se simplifica enormemente y suele quedar separable. Para finalizar solo resta deshacer el cambio, sustituyendo las u(x,y) por su valor como función que se ha establecido.
El caso anterior puede generalizarse a una ecuación diferencial de primer orden de la forma:










No hay comentarios:

Publicar un comentario